Arthur representations and the unitary dual

David Vogan

Massachusetts Institute of Technology

Mathematical Legacy of James Arthur

August 11-15, 2025

Arthur reps

David Vogan

teal induction

Cohom induction

Outline

Arthur reps

David Vogan

IIIIIOGGGGIOII

Cohom induction

Inipotent reps

Introduction and outline

Real parabolic induction

Cohomological parabolic induction

Unipotent representations

Slides at http://www-math.mit.edu/~dav/paper.html

Most interesting problem in mathematics...

Arthur reps

David Vogan

Introduction

Real induction

Conom induction

Onipotent reps

 \dots is understanding the unitary dual of G.

Meaning: all ways *G* can be automorphisms of a Hilbert space.

Interesting since math is full of interesting Hilbert spaces.

Gelfand (1930s): should solve this for *G* locally compact.

Mackey (1950s): enough to consider *G* simple.

(many parents) (1890–1970): best is *G* reductive.

My work is mostly about unitary dual of real reductive *G*.

I've stolen lots of excellent ideas about this problem, without ever completely solving it.

Subject for today: what I've stolen from Arthur.

Conjecture. Suppose G is a real reductive algebraic group, and π is a unitary representation of G having integral infinitesimal character. Then π is an Arthur representation.

I know no counterexs for G classical, and there are none for G_2 or E_6 .

For split F_4 , conj fails for at most two reps; for split E_7 , at most six; and for split E_8 , at most 27.

Why at most? Adams, Barbasch, and I gave a def of Arthur's reps, but the definition is hard to calculate.

In cases above we have a complete list of unitary reps and a nearly complete list of Arthur reps.

Quick calculations by Jeff Adams seem to prove that the F_4 reps above are not Arthur, so the conjecture seems to fail for many real exceptional G. (True for complex F_4 .)

What I will really do today

Arthur reps

David Vogan

Introduction

Real induction

Obstantant news

Unipotent reps

Describe three big ideas about unitary reps:

- real parabolic induction (Gelfand);
- 2. cohomological parabolic induction (Zuckerman); and
- 3. unipotent reps (Arthur).

Show how they almost compute Arthur's reps.

If time allows, I will discuss the fact that these three big ideas originate in three different countries:

- 1. one of which no longer exists;
- 2. one of which may not exist much longer; and
- Canada!

How rep theory works: motivation

Representation theory is useful because it concern all ways *G* can act on a Hilbert space.

Goal is to find very small collection of such actions, which magically exhausts the possibilities.

Parallel problem: find all ways *G* can act (transitively).

These are exactly conjugacy classes of subgroups $H \subset G$.

Too many *H* to make interesting statements.

Theorem If $H \subset G$ are algebraic, then \exists deformation (limit of conjugates) H_0 of H that is a normal subgroup of a parabolic subgroup of G.

This must be well known, but I do not know a reference.

Impossible problem of describing all subgps \leadsto tractable problem of describing normal subgroups of parabolics.

Arthur reps

David Vogan

Real induction

Cohom industion

Suppose $P(\mathbb{C})$ is a parabolic subgroup of reductive $G(\mathbb{C})$.

The quotient variety $G(\mathbb{C})/P(\mathbb{C})$ is projective algebraic.

 $P(\mathbb{C})$ has a unipotent radical $U(\mathbb{C})$, a unipotent normal subgroup.

The quotient group $L(\mathbb{C}) = P(\mathbb{C})/U(\mathbb{C})$ is again reductive.

Rep (π_L, V_{π_L}) of $L(\mathbb{C}) \rightsquigarrow G(\mathbb{C})$ -eqvt vector bundle

$$\mathcal{V}_{\pi_L} = G(\mathbb{C}) \times_{P(\mathbb{C})} V_{\pi_L} \to G(\mathbb{C})/P(\mathbb{C}).$$

Space (π_G, V_G) = sections of \mathcal{V}_{π_L} is rep of $G(\mathbb{C})$.

Theorem (Borel-Weil, Harish-Chandra, Langlands). If π_L is (nearly) irreducible rep of $L(\mathbb{C})$, then π_G is (nearly) irreducible rep of $G(\mathbb{C})$. Every irreducible rep of $G(\mathbb{C})$ arises in this way.

Preceding slide required *G* and *P* complex.

Suppose now that G = real points of $G(\mathbb{C})$, and that $P(\mathbb{C})$ is defined over \mathbb{R} . Then G/P is a compact manifold.

Unitary rep $(\pi_L, V_{\pi_L}) \rightsquigarrow$ Hermitian vector bundle \mathcal{V}_{π_L} .

Space of $V_{\pi_G} = L^2$ sections of \mathcal{V}_{π_L} is a Hilbert space, and (π_G, V_{π_G}) is unitary rep of G.

Theorem (Gelfand, Harish-Chandra). If π_L is nearly irr unitary of L, then π_G is nearly irr unitary of G.

But it is very far from true that every irr unitary of G arises in this way.

MORAL of thm: unitary of Levi $L(\mathbb{R}) \rightsquigarrow$ unitary of $G(\mathbb{R})$.

But not all real Levis come from real parabolics!

Levi subgp of real parabolic is cent in $G(\mathbb{R})$ of split torus.

Suppose $P(\mathbb{C}) \subset G(\mathbb{C})$ is opposite to its cplx conjugate $\overline{P(\mathbb{C})}$. Then $L(\mathbb{C}) = P(\mathbb{C}) \cap \overline{P(\mathbb{C})}$ is defined $/\mathbb{R}$, so $L(\mathbb{R}) = G(\mathbb{R}) \cap P$ is real Levi (not of a real parabolic).

 $P(\mathbb{C})$ defines $G(\mathbb{R})$ -invt cplx structure on $G(\mathbb{R})/L(\mathbb{R})$.

Such a Levi is cent in $G(\mathbb{R})$ of compact torus.

Unitary rep $(\pi_L, V_{\pi_L}) \rightsquigarrow$ holom Herm vector bdle \mathcal{V}_{π_L} .

Natural unitary rep of $G(\mathbb{R})$: L^2 holomo secs of \mathcal{V}_{π_L} .

But this is almost always **ZERO**.

Harish-Chandra (1954) found all nonzero exs: holom disc series.

In case $L(\mathbb{R}) = T$ compact torus, HC found desired the unitary reps $\pi_{G(\mathbb{R})}$... indirectly.

~1965, Kostant, Langlands suggested looking for $\pi_{G(\mathbb{R})}$ on higher Dolbeault cohom with coeffs in \mathcal{V}_{π_L} .

In the setting $P(\mathbb{C}) \subset G(\mathbb{C})$ opposite $\overline{P(\mathbb{C})}$ we call $P(\mathbb{C})$ θ -stable, with real Levi $L(\mathbb{R}) = P(\mathbb{C}) \cap G(\mathbb{R})$.

Suppose $G(\mathbb{R}) = GL(2n, \mathbb{R}) \supset L(\mathbb{R}) = GL(n, \mathbb{C});$

 $X = G(\mathbb{R})/L(\mathbb{R}) = \{\text{complex structures on } \mathbb{R}^{2n}\},$

cplx mfld of dim n^2 . Have a compact cplx submfld

 $Z = O(2n)/U(n) = \{\text{orthogonal complex structures on } \mathbb{R}^{2n} \}$ of dimension $s = (n^2 - n)/2$.

Theorem (Schmid). X is s + 1 complete, meaning as close to Stein as Z allows. Therefore

- 1. Dolbeault cohom on *X* vanishes above degree *s*.
- 2. Dolbeault cohom in degree s is a right exact functor holom vec bdles on $X \longrightarrow \text{vector spaces}$ Precisely analogous results hold for any θ -stable $P(\mathbb{C})$.

Representations on Dolbeault cohomology

Suppose $P(\mathbb{C}) \subset G(\mathbb{C})$ is θ -stable, with Levi $L(\mathbb{R})$

 $X = G(\mathbb{R})/L(\mathbb{R})$ cplx manifold.

Have an exact functor

rep (π_L, V_{π_L}) of $L(\mathbb{R}) \rightsquigarrow$ holom vector bdle \mathcal{V}_{π_L} on X.

Schmid's s + 1 complete theorem says that

rep
$$(\pi_L, V_{\pi_L})$$
 of $L(\mathbb{R}) \rightsquigarrow H^{0,s}(X, \mathcal{V}_{\pi_L})$

is right exact functor from reps of $L(\mathbb{R})$ to reps of $L(\mathbb{R})$.

Technical difficulties abound...

- 1. $\operatorname{im}(\overline{\partial})$ not obviously closed, so $H^{0,s}$ not obviously Hausdorff.
- 2. no unitary structure can exist on $H^{0,s}$.
- 3. lower degree Dolbeault coh makes $H^{0,s}$ not left exact.

Arthur reps

David Vogan

THE OCCUPATION

Cohom induction

Continue with $P(\mathbb{C}) \subset G(\mathbb{C})$ θ -stable, Levi $L(\mathbb{R})$.

The difficulties with cohomological induction are analytic.

Analysis is really difficult. Proof: it's what Jim does.

Harish-Chandra (another analyst) (1953) showed many rep theory problems are equiv to algebraic analogues.

Zuckerman (1977) found alg analogue of Dolbeault.

- 1. (sheaf of germs of holomorphic sections of \mathcal{V}_{π_L}) \leadsto (formal power series sections at eL on G/L)
- 2. (global sections functor) \rightsquigarrow (K-finite vectors).

In this way he made cohomological induction functors

$$R^i$$
: $((1, L \cap K)\text{-mod}) \rightarrow ((g, K)\text{-mod}) \qquad (0 \le i \le s)$

Henceforth twist \mathcal{V}_{π_L} by square root of canonical bundle.

There should be similar functors for rational Levis in p-adic G. Lots of the best p-adic rep theory in past fifty years is more or less in this direction, but I don't think there is a general result.

... and here's what he found.

$$P(\mathbb{C})=L(\mathbb{C})U(\mathbb{C})\subset G(\mathbb{C})$$
 θ -stable, Levi $L(\mathbb{R})\supset H(\mathbb{R})$ Cartan.

$$\mathfrak{h} = (\text{center of } \mathfrak{l}) \oplus (\mathfrak{h} \cap [\mathfrak{l}, \mathfrak{l}]) = \mathfrak{h}^{z} \oplus \mathfrak{h}^{d}$$

Suppose π_L is a finite length (I, $L \cap K$)-module, infinitesimal character $\gamma = \gamma^z + \gamma^d \in \mathfrak{h}^*$.

 γ_L^z is just character on center of Lie alg rep π_L .

Theorem (Zuckerman 1977 et al.)

1. Each $R^i(\pi_L)$ is fin lgth (\mathfrak{g}, K) -mod of infl char

$$\gamma = \gamma^z + \gamma^d \in \mathfrak{h}^*$$

- 2. If γ wkly nonpos on coroots of $U(\mathbb{C})$, then $R^i(\pi_L) = 0$ for i < s. If also π_L is unitary, then so is $R^s(\pi_L)$.
- 3. If γ^z wkly nonpos on coroots of $U(\mathbb{C})$ and π_L small enough, then $R^i(\pi_L) = 0$ for i < s. If also π_L is unitary, so is $R^s(\pi_L)$.

I still need to tell you

- (a) what "small enough" means, and
- (b) how this helps construct Arthur reps.

Arthur reps

David Vogan

Introducti

Real induction

Cohom induction

P = LU, $H \subset L$ Cartan, rep π_L of L, infl char $\gamma = \gamma^z + \gamma^d$.

Had two conditions:

- 1. γ antidominant on coroots of U, and
- 2. γ^z antidominant on coroots of U

Take G = GL(2n), $L = GL(n) \times GL(n)$, $H = \mathbb{C}^{\times})^{2n}$.

Take $\pi_L = (\operatorname{triv} \otimes |\det|^a) \otimes (\operatorname{triv} \otimes |\det|^b)$.

In standard basis $\{e_i \mid 1 \le i \le n\}$, $\{f_j \mid 1 \le j \le n\}$ of \mathbb{C}^{2n} , the n^2 coroots of H in U are $e_i - f_j$ $(1 \le i, j \le n)$.

Infl char $\gamma = \gamma^z + \gamma^d$ of π_L is

$$\gamma^{z} = [(a, ..., a)(b, ..., b)], \quad \gamma^{d} = [(n-1, n-3, ..., -n+1)(n-1, ...-n+1)]/2.$$

Condition (1) means $(a - b) \ge n - 1$.

Condition (2) is the weaker condition $(a - b) \ge 0$.

For rational P, conv of intertwiners \leftarrow (strict) cond (1)...

... or from weaker cond (2) plus temperedness of π^d .

Definition (Vogan 1984). Rep π is weakly unipotent if it has minimal infl char in its coherent family (family defined by Jantzen, Zuckerman, Schmid).

Examples: triv rep; any rep of infl char zero; unitarily induced from wk unip on Levi of real parabolic.

Examples all of you care about: suppose ψ is a real Arthur parameter "trivial" on $\mathbb{C}^{\times} \subset W_{\mathbb{R}}$. Then Arthur packet $A(\psi)$ consists entirely of weakly unipotent representations.

 $P(\mathbb{C}) = L(\mathbb{C})U(\mathbb{C}) \subset G(\mathbb{C}) \theta$ -stable, Levi $L(\mathbb{R}) \supset H(\mathbb{R})$ Cartan.

Theorem (Vogan 1984) If γ^z wkly nonneg on coroots of $U(\mathbb{C})$ and π_L weakly unipotent and unitary, then $R^{i}(\pi_{L}) = 0$ for i < s, and $R^{s}(\pi_{L})$ is unitary.

Executive summary: (summary accessible to administrators) Weakly unipotent unitary reps on θ -stable Levis can always be cohom induced to cohom induced to unitary.

Just need to choose $P(\mathbb{C})$ making central character weakly antidominant.

Arthur's conjectures led to wonderful families of interesting weakly unipotent unitary reps...probably all the reps relevant to automorphic forms on linear groups.

But there are more: to begin with, reps relevant to automorphic forms on nonlinear groups. (I hope we will hear from Wee Teck Gan about the case of metaplectic groups.)

Ivan Losev and a host of others (including Lucas Mason-Brown, Dmytro Matvieievskyi, and Dougal Davis) have developed more general constructions of weakly unipotent representations, and in many cases proven that these representations are unitary.

I am convinced that these representations—together, of course, with others obtained from them by real and cohomological parabolic induction—have a large role to play in our understanding of the unitary dual.

This is to remind me to sketch the construction of general Arthur packets from unipotent ones.